
ON A CLASS OF MOTIONS IN MAGNETO-HYDRO~ECHANICS 

(08 OBNOB KLASSE DVIZffENII V KAGNITNOI 
GIDROMEKBANIWE) 

PYM Vo1.22, No.3, 1958, pp.389.390 

V. N. ZHIGULEV 

(Uoscon) 

(Received 7 February 1958) 

The equations of magneto-bydromechanics for an ideal medium (i.e. a 
medium which is free from losses due to Joule heating, viscosity and heat 
conduction) can be written (see, for example, Ref. [ 1 1) in the form: 

g + div (pv) = 0, 

div H = 0, = PV) v 

dv 1 
P ~t+O~*=4xW7)H 

ds 
-_=o 
dt ’ 

p* =T p + g 

(1) 

Here p is the pressure, p the density, d the entropy per unit mass, 
v the vector velocity of particles of the gas. B the vector intensity of 
the magnetic field, d/dt the derivative with respect to time, following 

a given particle. 

The system of equations (1) has to be supplemented with the equation 
of state of the medium, which we shall write as: 

P = f (PI s) (2) 

In what follows we shall consider the class of motions which satisfy 
the following conditions: 

(HV) H = 0, (HD)v=O (3) 

The physical conditions (3) mean that the vectors B and v do not 
change along lines of magnetic force. 

Important cases of this class of motions are the plane and axisym- 
metric flows (in the general case. unsteady) where the vectors of velo- 
city and magnetic field intensity are perpendicular. Let us note that 
one-dimensional unsteady flow, which is also a particular case of the 
class of motions considered here, was studied in the paper 12 1. 

On taking into account the conditions (3), the equations of motion 
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assume the form: 

x + div (pv) = 0, 

P’ = f (P, 4 + kaP*, 

where k is a vector function which 
of the flow. 

Pg+vP*=o, dS 
dT = 0 

H=2J5 k.p (4) 

is constant along the trajectory line8 

Let us consider the change in the circulation of the velocity vector 
r= $vde around fluid contours (i.e. contours moving with the gas stream 
for the class of motions satisfying the equations (41. 

Substituting in equation (5) the value of the acceleration dv/dt from 
the second equation of system (4) and applying Stokes’ theorem, we have: 

dr * 
_= 

dt 1s [VP - VP*1 dS 

Pa 
S 

6 is a surface “stretched” across the contour under consideration). 
Introducing the expression for p* given in (41, we obtain: 

dr 

XT= ss ( .~~IVP.V~I+~~[VP.O~I)~S (q=;$) 
S 

Accordingly, if the flow of the class under consideration is isen- 

tropic and the quantity k is uniform in space, then the circulation 
around fluid contours has the property that it is conserved. The property 
so obtained is analogous with Thomson’s theorem for the motions under 
consideration. It follows from the demonstration of this property that 
there exist irrotational flows in the class under consideration. 

The second equation of system (4) can be transformed into the follow- 
ing: 

g + vf+ +p*-[vrotv]=O 

Projecting the vector equation (8) upon the direction of the velocity 
vector v, we have: 

(~~)e+_!-(~>++?-?=O (9) 

Moreover, assuming that the motion is steady and integrating equa- 
tion (91, whilst bearing in mind the relations (41, we obtain an analog 
of Bernoulli’s equation for the motions under consideration: 

The integral (10) holds good along streamlines. but in the case of 
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isentropic flow and if the quantity k is constant it holds for the whole 
of space (i.e. in the latter case 0 is a universal constant. for the 
entire flow). 

Considering now a motion which is unsteady and irrotstional and inte- 
grating equation (91, we obtain the following analog of Lagrange’s equation: 

where o1 is a universal function of time t for a given flow, and @ is the 
velocity potential. 

The majority of known methods in ordinary hydromechanics (as, for 
example, the method of characteristics, the method of linearized flows, 
and so on) can be carried over without difficulty to the case under con- 
sideration, 

Motions analogous to Prandtl-Meyer flows and Busemann’s conical flows 
can also be easily obtained as members of the class under consideration. 
In the isentropic case, if the quantity k is constant throughout the flow. 
the motions under consideration reduce to isentropic gas dynamics, in which 
the role of the pressure is assumed by the quantity p*. and the medium is 
changed so that the adiabat is expressed according to the formula 

Ff = I@, se) + k2’2pS (Q! 

In conclusion, we note that these same key simplifications for problems 
of magneto-~dromechanics can be obtained in the case of motion of a 
viscous heat-canducting gas, if the conditions (3) are again satisfied. 
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